Toxicity and Antifeedant Activity of Selected Plant Extracts Against Larval Obliquebanded Leafroller, *Choristoneura rosaceana* (Harris)

Ayhan Gökçe¹, Lukasz L. Stelinski*², Mark E. Whalon³ and Larry J. Gut³

¹Department of Plant Protection, Agriculture Faculty, Gaziosmanpaşa University, Taşköprü Yerleşkesi, Tokat, Turkey
²Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, Lake Alfred FL, USA
³Department of Entomology, Michigan State University, East Lansing, MI, USA

Abstract. Several plant extracts were evaluated against obliquebanded leafroller larvae to determine potential toxicity and antifeedant effects. Two of the plant extracts exhibited contact toxicity; the LC₅₀ value of *Humulus lupulus* extract against 3rd instar larvae was 24.5 μg / insect. In a no choice context, larval survivorship was reduced 23 - 57 % after feeding on a meridic pinto bean diet treated with the extracts. Furthermore, average female and male pupal weight was reduced for leafrollers that fed on diet treated with each of the individually-tested extracts at a 4 % concentration (w/w). Incorporation of *Bifora radians* and *H. lupulus* into diet deterred larval feeding at a 1 % concentration by weight. *H. lupulus and Arctium lappa* extracts were deleterious to larvae in each of the bioassay methods conducted, exhibiting toxic, developmental, and antifeedant effects. These two extracts may be promising candidates for further development as botanical insecticides that could potentially substitute broad-spectrum synthetic neurotoxins for leafroller control.

INTRODUCTION

The Obliquebanded leafroller, *Choristoneura rosaceana* (Harris), is a tortricid moth with a wide host range including woody plants in the Rosaceae as well as *Ulmus, Populus, Quercus, Betula*, and *Tilia* [1]. Depending on the geographic region and climate, there are one or two generations of adults per year with an overwintering second or third-instar larval generation [2]. The polyphagous larvae are primarily foliage feeders, but are also known to feed on and damage apple fruit [3].

Obliquebanded leafrollers are major pests in apple growing regions throughout the U.S.A. and Canada [4]. Due to azinphos-methyl resistance, population densities of this pest have increased in commercial apple growing regions in the Eastern United States [5]. Resistance to organophosphates is also becoming prevalent in Canada [6, 7]. Physiological resistance to other broad-spectrum insecticides and newer chemistries such as insect growth regulators has been also identified for several compounds including chlorpyrifos, esfenvalerate, and tebufenozide [4, 8].

Botanical insecticides such as azadirachtin are often effective alternatives to organophosphates or other neurotoxins for pest control due to multiple modes of action. These include toxicity, antifeedant and anti-oviposition effects [9,10]. Natural products containing secondary plant compounds such as terpenes, steroids, alkaloids, phenolics and cardiac glycosides [11] affect insect behavior and are toxic in some cases [12-18]. Identification of plant extracts that exhibit the above-described deleterious effects on pest insect physiology and behavior represents a potential alternative strategy for development of biorational controls that could replace synthetic neurotoxins. Our intent was to identify potential botanical insecticides that may prove to be effective alternatives for controlling obliquebanded leafroller.

In the current investigation, we tested the effects of several plant extracts, known to produce secondary compounds such as monoterpenes, sesquiterpenes and triterpenes [19-22] on obliquebanded leafroller larvae. These extracts were also chosen based on their previously-documented insecticidal activity [17,18,23]. The specific objectives of this study were to determine whether the selected plant extracts: 1) exhibit contact and/or ingestion toxicity to obliquebanded leafroller larvae, 2) affect pupal weight following ingestion by larvae, and/or 3) deter larval feeding.

MATERIALS AND METHODS

Insect Culture

Obliquebanded leafrollers were drawn from a six-year-old laboratory colony originally collected from unsprayed apple orchards in Southwestern Michigan, U.S.A. Moths were collected from the field as 1st and 2nd generation pupae and reared continuously without diapause. Insects were reared at 24°C and 60 % RH on a meridic pinto bean-based diet [24] under a 16:8 (L:D) photoperiod.

Plant Materials

The plant materials used in this study are given in Table I. The detailed experimental protocol for preparing plant extracts was described by Gökçe et al. [25]. All plant materials were collected during spring and summer seasons of 2002-2005. Dried and ground plant materials were treated with methanol for 24 h. Thereafter, the suspensions were
Additional toxicity studies were conducted using plant extract / insect. Insects were treated by applying 1 of Whatman # 1 filter paper in a 90 mm Petri dish. The dosages (see Results). For each replicate, 10 larvae were placed on obliquebanded leafroller larvae in the initial screening assay. For the control treatment, 100 μl of HPLC grade acetone was added to the diet. Three g of each diet treatment was transferred into 240 ml soufflé cups. To avoid cannibalism, one freshly-moulted 3rd instar larva was transferred into each cup. The larvae were incubated at 25 ± 2 ºC and on a 16:8 (L:D) photocycle for 14 d. Larvae were checked daily until all had pupated. Pupation was considered complete following melanization. The pupae were sexed using a dissection microscope and pupal weight was recorded using a bench balance (Sartoroius, CP124 S, Elk Grove, IL, U.S.A.). The experiment was repeated on three different days (blocks) and 30 larvae were exposed to each plant extract or control treatment per block.

Feeding Deterrence Assay

This experiment tested the hypothesis that larval feeding on diet treated with plant extracts in a no choice context affects larval survival and pupal weight. Ten, 20.0 or 40.0 mg of each plant extract in 100 μl of HPLC grade acetone was incorporated per g of freshly prepared pinto bean diet (described above) to give 1, 2 or 4 % (w/w) concentrations. Each plant extract diet treatment was formulated separately. For the control treatment, 100 μl of HPLC grade acetone was added to the diet. Three g of each diet treatment was transferred into 240 ml soufflé cups. To avoid cannibalism, one freshly-moulted 3rd instar larva was transferred into each cup. The larvae were incubated at 25 ± 2 ºC and on a 16:8 (L:D) photocycle for 14 d. Larvae were checked daily until all had pupated. Pupation was considered complete following melanization. The pupae were sexed using a dissection microscope and pupal weight was recorded using a bench balance (Sartoroius, CP124 S, Elk Grove, IL, U.S.A.). The experiment was repeated on three different days (blocks) and 30 larvae were exposed to each plant extract or control treatment per block.

Table 1. Plant Material Used to Prepare Extracts for Assaying Toxicity and Antifeedant Bioactivities against 3rd instar Obliquebanded Leafroller Larvae. All Collections Were Made in Tokat, Turkey, 2002-2005

<table>
<thead>
<tr>
<th>Family Name</th>
<th>Scientific Name</th>
<th>Tissue Used</th>
<th>Month of Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apiaceae</td>
<td>Bifora radians M Bieb</td>
<td>Leaves</td>
<td>April</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Arctium lappa L.</td>
<td>Leaves</td>
<td>June</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Xanthium strumarium L.</td>
<td>Fruit</td>
<td>August</td>
</tr>
<tr>
<td>Canabinaceae</td>
<td>Humulus lupulus L.</td>
<td>Flower bud</td>
<td>September</td>
</tr>
<tr>
<td>Scrophylaceae</td>
<td>Verbascum songaricum Schrenk ex Fisch & Mey</td>
<td>Leaves</td>
<td>July</td>
</tr>
</tbody>
</table>

Activities of Plant Extracts Against C. rosaceana

The Open Entomology Journal, 2010, Volume 4
These were incubated and weighed in a manner identical to that described above.

Data Analyses

For the initial screening bioassay, data were corrected for mortality in the controls using Abbott’s formula [27] and then normalized using an arcsine transformation [28]. Transformed data were submitted to a randomized complete block analysis of variance (ANOVA) ($P < 0.05$) and differences between treatments were compared using Tukey’s test ($P < 0.05$). Obliquebanded leafroller larval mortality data obtained from the dose-mortality bioassay utilizing *H. lupulus* were also corrected for control mortality with Abbott’s formula. The corrected mortality data were analyzed using POLO-PC [29] to estimate lethal concentration 10, 50, and 90 values ($LC_{10}, LC_{50}, LC_{90}$) and the regression line slope. For the ingestion toxicity experiment, data were corrected with Abbott’s formula and then normalized using an arcsine transformation [28]. Transformed data were submitted to a randomized complete block ANOVA ($P < 0.05$) and differences between treatments were tested using Tukey’s test ($P < 0.05$). Pupal weights of male and female leafrollers were analyzed separately and submitted to a randomized complete block ANOVA ($P < 0.05$) followed by Tukey’s test ($P < 0.05$). For the feeding choice assay, the numbers of larvae feeding on extract-treated versus control portions of the diet were compared by χ² tests. All statistical analyses were carried out using MINITAB Release 14 [30].

RESULTS

Contact Toxicity of Plant Extracts

Topically-applied *H. lupulus* induced the highest mortality of obliquebanded leafroller larvae (Fig. 1). Mortality of 3rd instar obliquebanded leafrollers was significantly ($F = 9.8; d.f. = 5, 12; P < 0.05$) greater for larvae treated with *H. lupulus* and *A. lappa* plant extracts compared with the solvent control (Fig. 1). There was no significant effect ($P > 0.05$) of topical treatment with *B. radians*, *V. songaricum*, and *X. strumarium* extract solutions compared with the solvent control (Fig. 1).

Toxicity of *H. lupulus* Extract

The slope and intercepts of the dosage-mortality relationship for obliquebanded leafroller larvae treated with *H. lupulus* extract were $0.93 ± 0.15$ and $0.02 ± 0.02$, respectively. The LC_{10}, LC_{50}, and LC_{90} values (Fiducial Limits %) were $1.03 (0.16 - 2.42)$, $24.52 (14.08 - 60.32)$, and $581.53 (164.20$ to $11,724.49) \mu g / insect$, respectively.

Ingestion Toxicity and Developmental Effects of Plant Extracts

There was no significant ($F = 1.3; d.f. = 5, 12; P = 0.32$) effect of any of the plant extracts on survivorship of feeding larvae at the 1 % concentration (Table 2). Significantly fewer ($F's = 7.1$ and $4.8; d.f. = 5, 12, P < 0.05$) obliquebanded leafroller larvae survived to pupation at the 2 and 4 % concentra-

Table 2. Average Survivorship ± S.E. of Obliquebanded Leafroller Larvae Reared on Pinto Bean Diet Containing Various Concentrations of the Plant Extracts

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Larval Survival (%) at Various Concentrations of Plant Extract in Diet (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 %</td>
</tr>
<tr>
<td>Arctium lappa</td>
<td>98.85 ± 1.96 a</td>
</tr>
<tr>
<td>Bifora radians</td>
<td>98.85 ± 1.96 a</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>93.10 ± 3.19 a</td>
</tr>
<tr>
<td>Verbascum songaricum</td>
<td>95.46 ± 1.96 a</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>100 ± 0.00 a</td>
</tr>
<tr>
<td>Solvent control</td>
<td>100 ± 0.00 a</td>
</tr>
</tbody>
</table>

*Means in a column followed by the same letter are not significantly different (ANOVA, $P < 0.05$) followed by Tukey’s mean separation ($P < 0.05$).
activities of plant extracts against C. rosaceana

Feeding by obliquebanded leafroller larvae on the diet containing 1% plant extracts (by weight) did not significantly affect pupal weight for both sexes (F’s = 0.7 and 3.1; P > 0.05 for males and females, respectively) (Table 3). Increasing the concentration of plant extract in diet caused a reduction in pupal weight. Female pupal weight was significantly lower (F = 4.7; d.f. = 5, 12; P < 0.05) for each plant extract tested (Table 75.8, respectively, d.f. = 5,12; P < 0.05) for each plant extract tested (Table 3). At the 1% concentration, significantly fewer (P < 0.05) larvae were found feeding on B. radians and H. lupulus–treated diet compared with the solvent control at the 4% concentration (Table 4).

At the 1% concentration, B. radians and H. lupulus showed evidence of feeding inhibition on the pinto bean diet with AFI’s of 0.56 and 0.27, respectively (Fig. 2A). There was a high level of feeding inhibition for B. radians, H. lupulus and A. lappa–treated diet at the 4% concentration with AFI’s ranging from 0.69 to 0.85 (Fig. 2B). There was no apparent antifeedant effect of V. songaricum or X. strumarium at either concentration tested (AFI’s ≈ 0) (Fig. 2A, B).

DISCUSSION

At the 1% concentration, significantly fewer (P < 0.05) larvae were found feeding on B. radians compared with the solvent control; there was no significant (P > 0.05) effect for the other plant extracts tested (Table 4). However, significantly fewer (P < 0.05) larvae were found feeding on B. radians and H. lupulus–treated diet compared with the solvent control at the 4% concentration (Table 4).

At the 1% concentration, B. radians and H. lupulus showed evidence of feeding inhibition on the pinto bean diet with AFI’s of 0.56 and 0.27, respectively (Fig. 2A). There was a high level of feeding inhibition for B. radians, H. lupulus and A. lappa–treated diet at the 4% concentration with AFI’s ranging from 0.69 to 0.85 (Fig. 2B). There was no apparent antifeedant effect of V. songaricum or X. strumarium at either concentration tested (AFI’s ≈ 0) (Fig. 2A, B).

DISCUSSION

Discovery of novel toxins and/or antifeedants from plant extracts has been recently emphasized as a potential method for the development of “ecologically safe pesticides” [31]. There is ample precedent for screening crude plant extracts for biological activity as botanical insecticides against Lepidoptera. For example, crude methanolic extracts of Trichilia americana and ethanolic extracts of Annona squamosa seeds reduced pupal weight and exhibited toxic activity against the Asian armyworm, Spodoptera litura (Fabr.) [31,32]. In addition, ethanolic seed extracts of A. squamosa and A. muricata reduced larval growth of S. litura and the cabbage looper, Trichoplusia ni (Hbn.) [33], while acetonic seed extracts of A. squamosa showed insecticidal activity against the cabbage

Table 3. Average Pupal Weight of Obliquebanded Leafrollers Reared on Pinto Bean Diet Containing Various Concentrations of Plant Extracts

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Average Pupal Weight ± SE (mg) at Various Concentrations of Plant Extract in Diet (w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Females</td>
</tr>
<tr>
<td></td>
<td>1 %</td>
</tr>
<tr>
<td>Arctium lappa</td>
<td>85.17 ± 2.65 a</td>
</tr>
<tr>
<td>Bifora radians</td>
<td>83.83 ± 6.32 a</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>79.20 ± 1.85 a</td>
</tr>
<tr>
<td>Verbascum songaricum</td>
<td>79.13 ± 1.93 a</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>98.87 ± 7.06 a</td>
</tr>
<tr>
<td>Solvent control</td>
<td>97.53 ± 2.96 a</td>
</tr>
</tbody>
</table>

*Means in a column followed by the same letter are not significantly different (P < 0.05).

Table 4. Deterrence of 3rd Instar Obliquebanded Leafroller Larval Feeding by Plant Extracts Incorporated into Pinto Bean Diet

<table>
<thead>
<tr>
<th>Plant Species</th>
<th>Proportion of Larvae Feeding on Extract-Treated Versus Control Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 % Extract in Diet (w/w)</td>
</tr>
<tr>
<td></td>
<td>Treatment</td>
</tr>
<tr>
<td>Arctium lappa</td>
<td>0.45 a</td>
</tr>
<tr>
<td>Bifora radians</td>
<td>0.28 a</td>
</tr>
<tr>
<td>Humulus lupulus</td>
<td>0.35 a</td>
</tr>
<tr>
<td>Verbascum songaricum</td>
<td>0.48 a</td>
</tr>
<tr>
<td>Xanthium strumarium</td>
<td>0.55 a</td>
</tr>
</tbody>
</table>

*Values in a row followed by the same letter are not significantly different (P < 0.05).
head caterpillar, *Crocidolomia binotalis* Zeller [34]. Furthermore, crude extracts of *Melia volkensii* have been shown to inhibit larval growth of *T. ni* and the armyworm, *Pseudaleia unipunctata* (Haworth) [35].

Furthermore, crude extracts of *Melia volkensii* have been shown to inhibit larval growth of *T. ni* and the armyworm, *Pseudaleia unipunctata* (Haworth) [35].

Fig. (2). Antifeedant effects of plant extracts incorporated into pinto bean diet at 1 % (A) and 4 % (B) concentrations (w/w) on 3rd instar obliquebanded leafroller larvae. AFI = (C – T) / (C + T), where C and T are the weights of control and plant extract-treated diet consumed.

Our results demonstrated that two of the plant extracts evaluated (*A. lappa* and *H. lupulus*) exhibited contact toxicity to obliquebanded leafroller larvae while four of the extracts decreased larval survivorship and final pupal weight following ingestion (Table 2). *H. lupulus* yielded the highest contact toxicity with an *LC*$_{50}$ of 24.5 μg/l larva. These results are in agreement with previous studies showing pronounced contact toxicity of *H. lupulus* to various development stages of Colorado potato beetle, *Leptinotarsa decemlineata* (Say) [17,18]. The contact and ingestion toxicities induced by the tested plant extracts, particularly *H. lupulus*, suggest the potential for their future use against obliquebanded leafroller as botanical insecticides. Further testing of biological activity on other related pest species such as redbanded leafroller, *Argyrotaenia velutinana* (Walker), and Pandemis leafroller, *Pandemis pyrusana* Kearfott, is warranted.

In addition to toxicity via contact or ingestion, plant extracts and allelochemicals have been screened for activity as insect antifeedants [36-38]. In some instances, the bioactivity of crude plant extracts on insects is comprised of both toxic and antifeedant effects [32,35]. Azadirachtin, for example, derived from the neem tree (*Azadirachta indica*), is both a toxic and antifeedant and has been one of the most widely tested and successfully implemented botanical insecticides over the past two decades [39-41]. In the current study, *H. lupulus* and *A. lappa* exhibited antifeedant activity on obliquebanded leafroller larvae in addition to contact toxicity, while *B. radians* was an antifeedant and exhibited toxic effects when ingested. *H. lupulus*, *A. lappa*, and *B. radians* are also known to deter feeding of larval *L. decemlineata* [23]. Our results suggest that potential future application of these extracts or their active components for leafroller control may exploit more than one mode of action. However, future experiments should focus on determining whether prolonged exposure of obliquebanded leafroller larvae to these plant extracts decreases antifeedant effects over time due to habituation of response [42].

H. lupulus contains alpha and beta acids, prenylflavanoids, and proanthocyanidins [43,44]. The beta acid derivative of *H. lupulus* repels both chewing and sucking insect pests of plants [45] and the two-spotted spider mite, *Tetranychus urticae* Koch [46,47]. Future studies will need to be conducted to determine whether the biological activity of *H. lupulus* against obliquebanded leafroller larvae is mediated by the beta acid component. Furthermore, identification of the bioactive components of *A. lappa* and *B. radians* may allow development of botanical insecticides with greater potency than the crude plant extracts evaluated here.

Akhtar and Isman [35] stressed the need for conducting multiple types of bioassays when screening potential botanical insecticides given that effects such as growth inhibition may not always be correlated with other consequences such as feeding deterrence. Therefore, in the current investigation, we evaluated multiple types of effects including: 1) toxicity following topical application or ingestion, 2) effects of ingestion on pupal weight, and 3) feeding deterrence. Two of the extracts tested (*H. lupulus* and *A. lappa*) induced deleterious effects for each bioassay method and thus may be the most promising candidates of those screened here for further development as botanical insecticides against obliquebanded leafroller and potentially other Lepidopteran pests. The next step toward developing these extracts as useful insecticides will focus on field testing to determine whether: 1) the toxic and antifeedant effects described here impact crop injury levels, 2) the efficacy of extracts is affected by prolonged UV and/or rain exposure, and 3) beneficial insects are affected.

ACKNOWLEDGEMENTS

Ayhan Gökçe was supported by TUBITAK BIDEB 2219 program during this study at Michigan State University in
Activities of Plant Extracts Against C. rosaceana

the U.S.A. We thank Krista Buehrer and Elizabeth Steere for diligent maintenance of insect colonies and diet preparation.

REFERENCES