Plant growth regulators (PGRs) are a tool used to manipulate vegetative and reproductive growth, flowering, and fruit growth and development. PGRs have been successfully used in agriculture for decades to amend plant growth characteristics to maximize yield and grower profit. Foliar applied PGRs are routinely used in various fruits crops for flower and fruit thinning, improving fruit set, growth, and development, controlling vegetative growth, and to reduce fruit drop. Citrus is no exception to use of PGRs, which can provide significant economic advantages to citrus growers when used appropriately. Generally, PGRs are defined “as any substance or mixture of substances intended, through physiological action, for accelerating or retarding the rate of growth or maturation or for otherwise altering the behavior of ornamental or crop plants or the produce thereof, but not including substances intended as plant nutrients, trace elements, nutritional chemicals, plant inoculants, or soil amendments”.

A plant hormone is a chemical signal produced in one part of the plant and then transported through vascular bundles to another part where it triggers a response. Hormones regulate plant responses to various biotic and abiotic stimuli. PGRs are synthetic analogues of naturally occurring plant hormones (PGRs and hormones mean the same throughout this document). There are five classic groups of PGRs: auxins, cytokinins, gibberellins, abscisic acid, and ethylene (Table 1).

Recently, a few new groups of PGRs have been recognized. They include jasmonates, salicylic acid, strigolactones, and brassinosteroids. Each group of PGRs has unique attributes and is involved in a number of different physiological processes. Moreover, it is very important to keep in mind that hormones or PGRs do not work in isolation. Their response and efficacy often depend on several factors such as their concentrations, levels of other plant hormones, plant health, nutritional and water status, time of year, and climate. For example, gibberellins influence on citrus flowering, fruit set, seedlessness, color development, and pre-harvest fruit drop varies with those factors listed above.

AUXINS

Auxins are one of the first identified plant hormones. Auxins are well known to be involved in plant-cell elongation, apical dominance, inhibiting lateral bud growth, promoting rooting,

TABLE 1. Major plant growth regulator classes, associated function(s), and practical uses in agriculture

<table>
<thead>
<tr>
<th>Class</th>
<th>Associated function(s)</th>
<th>Practical uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxins</td>
<td>Shoot elongation</td>
<td>Fruitlet thinning, increase rooting and flower formation; sprout inhibitor</td>
</tr>
<tr>
<td>Gibberellins</td>
<td>Stimulate cell division and elongation</td>
<td>Increase shoot length, fruit size, and fruit set</td>
</tr>
<tr>
<td>Cytokinins</td>
<td>Stimulate cell division</td>
<td>Prolong storage life of flowers and vegetables and stimulate bud initiation and root growth</td>
</tr>
<tr>
<td>Ethylene</td>
<td>Ripening, abscission, and senescence</td>
<td>Induces ripening and loosens fruit</td>
</tr>
<tr>
<td>Abscisic acid</td>
<td>Seed maturation, dormancy</td>
<td>Regulates plant stress</td>
</tr>
<tr>
<td>Jasmonates</td>
<td>Plant defense</td>
<td>Wound response</td>
</tr>
<tr>
<td>Salicylic acid</td>
<td>Systemic Acquired Resistance (SAR)</td>
<td>Defense against pathogenic invaders</td>
</tr>
<tr>
<td>Brassinosteroids</td>
<td>Developmental processes</td>
<td>Regulate germination and other developmental processes</td>
</tr>
<tr>
<td>Strigolactones</td>
<td>Suppress branching and promote rhizosphere interaction</td>
<td>Suppress branching, promote secondary growth, and promote root hair growth</td>
</tr>
</tbody>
</table>

1. This document is a new publication in a series of the Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date: May 2017. Visit the EDIS website at http://edis.ifas.ufl.edu. For a copy of the Florida Citrus Production Guide, request information on its availability at your county extension office.

2. T. Vashisth, assistant professor, Horticultural Sciences Department, Citrus REC, Lake Alfred, Florida; W.C. Oswalt, Extension Agent III, Polk County Extension Service, Bartow, Florida; M. Zekri, Extension Agent IV, Hendry County Extension Service, LaBelle, Florida; F.M. Alferez, assistant professor, Horticultural Sciences Department, Southwest Florida REC, Immokalee, Florida; J.D. Burrow, extension program manager, Citrus REC, Lake Alfred, Florida; Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, 32611.
suppressing abscission, inhibiting flowering, and seed dormancy. A well-known auxin is indoleacetic acid (IAA), which is produced in actively growing shoot tips and developing fruit, and is involved in elongation.

Synthetic auxin analogs like 2, 4-dichlorophenoxyacetic acid (2, 4-D) and naphthalene acetic acid (NAA) are extensively used in fruit crops. 2, 4-D is commonly used in agriculture as a herbicide. 2, 4-D is also used to control pre-harvest fruit drop, increase fruit size (oranges, grapefruit, mandarin, and mandarin hybrids), and to control leaf and fruit drop. The efficiency of 2, 4-D in reducing pre-harvest fruit drop increases when used with oil sprays. The timing of 2, 4-D application to reduce pre-harvest fruit drop should be carefully assessed to minimize undesirable effects on flowering and harvest timing. However, 2, 4-D should not be applied too early in the season as it may lose its desirable effect.

NAA is used to inhibit the undesirable growth of suckers on tree trunks. As discussed earlier, NAA can inhibit lateral branching; therefore, its application to trunks keeps lateral buds in dormant state. NAA can also promote abscission of fruit; therefore, it can be successfully used to thin excessive fruit set and increase size of the remaining fruit. Environmental conditions can greatly influence uptake and activity of NAA. Higher temperatures and delayed drying of spray solution both contribute to greater thinning action. Best results are likely to occur when applied between 75° and 85° F. Since uptake continues for several hours after the spray dries, heavy rain within six hours of application may significantly reduce NAA action.

GA is used in citrus to delay fruit senescence. GA delays changes in rind color; therefore, its application will result in fruit with green rinds and delayed coloring, which will have a negative effect on marketing fruit early in the season for fresh fruit market. Whereas, this effect is desirable for late-harvested fruit, it results in fruit that are paler in color than the deeper-colored fruit from untreated trees. GA can also affect the flowering in citrus; therefore, GA application can reduce the number of flowers and eventually fruit yield. Application close to flowering season can reduce the number of flowers, therefore, timing of GA applications should be carefully assessed. Depending on application timing, GA can reduce pre-harvest fruit drop and improve fruit set in some citrus varieties.

GIBBERELLINS

Gibberellins, abbreviated as GA for Gibberellic Acid, is the second group of plant hormones. GA has many effects on plants, but primarily stimulates elongation growth. Spraying a plant with GA will usually cause the plant to grow vegetatively larger than normal. GA also influences various plant developmental processes like seed germination, dormancy, flowering, fruit set, and leaf and fruit senescence.

GA is used in citrus to delay fruit senescence. GA delays changes in rind color; therefore, its application will result in fruit with green rinds and delayed coloring, which will have a negative effect on marketing fruit early in the season for fresh fruit market. Whereas, this effect is desirable for late-harvested fruit, it results in fruit that are paler in color than the deeper-colored fruit from untreated trees. GA can also affect the flowering in citrus; therefore, GA application can reduce the number of flowers and eventually fruit yield. Application close to flowering season can reduce the number of flowers, therefore, timing of GA applications should be carefully assessed. Depending on application timing, GA can reduce pre-harvest fruit drop and improve fruit set in some citrus varieties.

CYTOKININS

Cytokinins were named because of their role in stimulating plant cells to divide. In addition to being highly involved in cell division, cytokinins have been shown to have important effects on many physiological and developmental processes including activity of apical meristems, shoot growth, inhibition of apical dominance, leaf growth, breaking of bud dormancy, and xylem and phloem development. Cytokinins also play an important role in the interaction of plants with both biotic and abiotic factors including plant pathogens, drought and salinity, and mineral nutrition.

ABSCISIC ACID

Despite its name, abscisic acid (ABA) does not initiate abscission (drop). ABA is synthesized in the chloroplast of the leaves, especially when plants are under stress and diffuses in all directions through the vascular bundles. ABA promotes dormancy, inhibits bud growth, and promotes senescence. ABA plays a major role in abiotic stress. During water stress, ABA levels increase in leaves which leads to the closing of guard cells; hence, reducing transpiration (water loss). ABA is costly to synthesize; therefore, its use in agriculture is limited.

ETHYLENE

Ethylene, a gaseous hormone, is well known for its role in promoting fruit ripening. In addition to promoting fruit ripening, ethylene plays a major role in leaf, flower, and fruit abscission. Ethylene also affects cell growth, shape, expansion, and differentiation. Plants under biotic or abiotic stresses produce high levels of ethylene which triggers an array of responses. For example, when leaves are damaged or infected, high levels of ethylene are produced to promote abscission of those leaves. Ethylene is commonly used in de-greening oranges, tangerines, lemons, and grapefruit that remain green after ripening making them more attractive to consumers. An ethylene treatment of mature, but poorly-colored fruit enhances the peel color and increases the marketability of fruit.

NEW CLASSES OF PLANT HORMONES

Brassinosteroids

Brassinosteroids (BR) play pivotal role in wide range of developmental phenomena in plants such as cell division, cell differentiation, cell expansion, germination, leaf abscission, and stress response. Based on the involvement of BR in number of physiological processes, their application might be of interest in horticultural crops. Successful use of BR in agriculture depends on the production of cost effective, stable synthetic analogs of BR.
Strigolactones
This group of plant hormones is known for inhibiting shoot growth and branching and stimulating root hair growth. Strigolactones also promote a symbiotic interaction with mycorrhizal fungi, and facilitating phosphate uptake from the soil.

Jasmonates
This group of plant hormones is highly involved in plant defense response. Herbivory, wounding or pathogen attacks trigger the production of these hormones, which result in the regulation of plant defense related genes to fight the infection.

Salicylic Acid
Salicylic acid (SA) plays a role in a number of plant growth and development processes, photosynthesis, and transpiration. SA is well known for mediating a plant’s defense response against pathogens. Their role in the resistance to pathogens is by inducing the production of pathogenesis-related proteins. It is involved in the systemic acquired resistance (SAR) where a pathogenic attack on one part of the plant induces resistance in itself and other plant parts.

USE OF PGRS FOR HUANGLONGBING AFFECTED TREES
Huanglongbing (HLB) affected trees often incur severe problems with pre-harvest fruit drop. Due to the ability of PGRs such as 2, 4-D and GA in reducing pre-harvest fruit drop, they were considered as good candidates to mitigate HLB-associated pre-harvest fruit drop. Extensive field trials suggest PGRs are inconsistent in reducing HLB-associated pre-harvest fruit drop. Therefore, it is suggested not to use PGRs to alleviate HLB-associated pre-harvest fruit drop.

GENERAL CONSIDERATION FOR USE OF PGRS IN CITRUS GROVES IN FLORIDA
Since PGRs function by directly influencing plant metabolism, plant response can vary considerably depending on the variety and plant stress level. Therefore, it is highly recommended that growers should become familiar with PGRs and their effects before their application, and should trial them on small plots before treating significant acreage. Most PGRs work best when used with an adjuvant (surfactant, sticker or spreader). PGRs are regulated as pesticides and therefore the label should be followed, *label is the law*. Table 2 summarizes some of the PGRs that are known to be effective in Florida citrus production.

Things to consider when applying PGRs are:
- Concentration of active ingredient
- Volume of spray
- Method of application
- Time of the day for application
- Season of the year
- Compatibility with other chemicals in the tank mix
- Type of adjuvant
- Weather condition (humid, dry, sunny, cloudy, windy)
- Tree health (canopy density)
- Plant stress
TABLE 2. Plant growth regulator sprays-Florida citrus

CAUTION: Growth regulators may cause serious problems if misused. Excessive rates, improper timing, and fluctuating environmental conditions can result in phytotoxicity, crop loss, and/or erratic results. Under certain environmental conditions, 2, 4-D may drift onto susceptible crops in surrounding areas. Observe wind speed restrictions and follow all label directions and precautions.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Response</th>
<th>Time of Application</th>
<th>Growth Regulator and Formulation</th>
<th>Product per Acre¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange, Temple, and Grapefruit</td>
<td>Preharvest fruit drop</td>
<td>November-December</td>
<td>Citrus Fix 2, 4-D Dichlorophenoxyacetic acid (Isopropyl ester 3.38 lbs/gal)</td>
<td>3.2 oz</td>
</tr>
<tr>
<td>Navel orange</td>
<td>Reduction of summer-fall drop</td>
<td>6-8 weeks after bloom or August-September for fall drop</td>
<td>Citrus Fix 2, 4-D Dichlorophenoxyacetic acid (Isopropyl ester 3.38 lbs/gal)</td>
<td>2.4 oz</td>
</tr>
<tr>
<td>Tangerine and Murcott</td>
<td>Fruit thinning; activity is temperature dependent. Severe over thinning may result from applications made to trees of low vigor and/or under stress conditions</td>
<td>Mid May</td>
<td>Naphthaleneacetic acid, NAA, (Fruit Fix 800 g/gal liquid amine formulation)</td>
<td>2-5 pts</td>
</tr>
<tr>
<td>Seedless grapefruit</td>
<td>Delay of rind aging process and peel color development at maturity; combine with 2, 4-D for fruit drop control</td>
<td>November-January</td>
<td>Gibberellic acid, GA₃, (Pro-Gibb 4% liquid concentrate)²</td>
<td>20 oz</td>
</tr>
<tr>
<td>Tangelos</td>
<td>Improvement of fruit set; can result in small size and leaf drop</td>
<td>Full bloom</td>
<td>Gibberellic acid, GA₃, (Pro-Gibb 4% liquid concentrate)²</td>
<td>10-30 oz</td>
</tr>
<tr>
<td>Minneola Tangelo</td>
<td>Delay of stem end rind deterioration</td>
<td>Early December</td>
<td>Gibberellic acid, GA₃, (Pro-Gibb 4% liquid concentrate)²</td>
<td>20 oz</td>
</tr>
</tbody>
</table>

¹Rates are based on application of 500 gals per acre to mature trees. The effects of applications at lower volumes (concentrate sprays) are unknown.

²Do not use in spray solutions above pH 8.