

Calculating Variables

 Aphids have 8 waveforms arranged in probing and non-probing intervals.

Np, C, pd, C, pd, C, Np, C, pd, C, pd, C, pd, C, pd, E1, E2, C, pd, G, Np, C, pd, C, Np First Probe Second Probe Third Probe

- There are 3 C in the first probe, 5 in the second, and 2 in the third.
 - This insect has 10 C events, or (3+5+2)/3 C events per probe

Variables

Np, C, pd, C, pd, C, Np, C, pd, C, pd, C, pd, C, pd, E1, E2, C, pd, G, Np, C, pd, C, Np First Probe Second Probe Third Probe

- Each C event has a duration.
 - Total Duration of C: add up the duration of all C events.
 - Mean Duration of C:Take the above sum and divide by 10.
 - Mean duration of C per probe: Sum the first 3 C, divide by three. Sum the next five C and divide by five. Sum the last 2 and divide by 2. Sum these values and divide by three.
 - Duration of the C before first EI

Sequential and non-sequential

- Non-sequential variables are ones where order doesn't matter.
 - Mean duration of C: I can switch the duration of the Ist C and the 8th C and I will get the same answer.
 - Mean Duration of C in the first probe: I can change the order of C events within the first probe and I will get the same answer.
- Sequential variables are ones where order is important.
 - Mean duration of C per probe: if I switch the Ist and 8th C event, I will not get the same answer unless the two events happen to be the same duration.

Conditional vs non-conditional

- Non-conditional
 - Mean duration of C: This calculation uses all C events in the recording.
- Conditional
 - Mean Duration of C in the first probe: This calculation is restricted to only C events in the first probe.

EPG Work-

shop

- The Whole Experiment
- Within each Cohort (treatment)
 - Cohort is treatment if there is a treatment.
 - Cohort may be observational, like sex, color or genotype.
- Within each insect
- Within each probe
- A single event

EPG Work-

shop

- An event
- Duration of C before first sustained E2
- There is at most a single value for each insect.
- I can average across all insects within a cohort, divide by the number of insects, and get a mean.
- I now have mean duration of C before first sustained E2.

- Probe
- Duration of C per probe.
- For each insect, calculate the duration of C for each probe, then divide by the number of probes for that insect.
- Calculate means and variances for each cohort.
- Mean duration of C per probe.

- Insect
- Total duration of G
- Sum the duration of G for each insect.
- Sum this value for all insects within a treatment and divide by the number of insects.
- Mean total duration of G

EPG Workshop

- Experimental unit is the insect.
- One can calculate means or totals for cohort or experiment.
- Large complex experiments can get around this, but this is seldom done.

EPG Workshop

A Bounty of Variables

- Mean duration of each waveform
- Number of each waveform
- Average number of each waveform per probe
- Time to first occurrence
- Time to sustained ingestion (E2 and G)
- By hour (Duration of NP in 1st hour)
- Proportions: E2 as a proportion of E1+E2
- Number of Probes to first
- And many more

EPG Workshop

Primary Available Options

- There are five main programs for calculating EPG variables.
- Sarria Workbook:
 - Sarria, E., M. Cid, E. Garzo, A. Fereres. 2009. Workbook for automatic parameter calculation of EPG data. Computers and Electronics in Agriculture. 67: 35-42.
- Backus I.0:
 - Distributed through a workshop or by contacting Elaine Backus.

• EPG-Calc:

- http://link.springer.com/article/10.1007/s11829-014-9298-z
- Ebert I.0:
 - http://www.crec.ifas.ufl.edu/extension/epg/sas.shtml
- JKL:
 - available through epgsystems.eu

Sarria Workbook

- All are calculated for each insect
- Easy to use
- Used many times
- Output must be moved to a statistical package for analysis
- Best used for aphids where behaviors A and B are not important.

Backus I.0

- Widely used
- Useful on any insect with any behavior
- Calculates variables at different hierarchical levels.
- Is limited to nonsequential and nonconditional variables.
- Is paired with parts of Ebert 1.0 to enable reading text files and error checking.

Ebert I.0 (and other versions)

- Completes all data analysis steps using a single software platform (SAS).
- Is open source. You modify the code to fit your project. Current versions are:
 - Ebert 1.0: a mimic of the Sarria Workbook for use with aphids.
 - Ebert 2.0: an adaptation of Ebert 1.0 for use with psyllids.
- It is not easy to use.
- It is expensive.

EPG Work-

shop

EPG-CALC and JKL

- Similar to others, yet with a few different variables.
- JKL is an Excel workbook.
 - Calculates cumulative "by hour" where Sarria calculates by hour.
- All results must be transferred to a statistical analysis software package.

Other Options

- There are a few other programs that were not listed.
- Program the computer to do the analysis yourself.
- The benefit to the last option is that it provides the greatest flexibility to get exactly the output you need.
- The problem is that it is difficult to program. The listed programs have been checked for accuracy in several ways. How will you provide that level of insurance that your new program is providing the correct output?

Disclaimer

- All of the programs discussed (Sarria, JKL, etc...) are free. They have been checked extensively. That does not mean that they are error free. The user is responsible for any problems arising from the use of these programs.
- If you find an error to any program, I am sure the owner would appreciate knowing about it.

Software

- You will be downloading software, and extracting files in the next section.
- You need SAS already installed.
- You need Microsoft Excel® and Microsoft Word® installed, or OpenOffice® installed. I will use Microsoft products, but OpenOffice is <u>equally</u> as good.