Tart Cherry

Objective
Investigate and develop alternative approaches to overall tart cherry production systems that address economic and environmental sustainability challenges through a combined/integrated approach of automation and orchard production systems.

Drivers
- Market utilization, including pit presence.
- Returns to growers.

Fruit quality
- Productive land (real estate).
- Spray drift / noise.
- Yield / Acre.
- Uniformity.
- Time to commercial production.

Economic
- **Land usage**

Evaluated concepts
Traditional / current systems
- Canopy harvest (Bramble & Citrus)
- BEI, Inc. dual spindle harvester

Orchard variables – Optimize harvester & yield
- Genetics
 - Tree size (Small & compact).
- Trunk type (Multi-stemmed vs. single trunks).
- Growth type (Spur vs. Willowy).

- High density planting (1.5 m x 4 m).
- Single with multiple branching.
- Multi-stem / bush.

- Canopy structure / pruning:
 - Shape.
 - Branch recycling.
 - Hedging.
 - Trellising.

Horticultural practices
- Pruning:
 - Gentle – Can work with plants in 2nd leaf vs. 4th–5th leaf after planting.
 - Less fruit drop height.
 - Decrease trunk damage & diseases.
 - Increase harvest efficiency through continuous harvest.
 - Increase fruit uniformity & overall quality.

Concerns/Questions: Some tree/limb damage; potential for sweet cherries?; handling/logistics of harvested fruit.

Chestnuts

Objective & drivers
Develop a cost effective alternative harvest concept and system for small to moderate scale producers in the United States of America.

Drivers
- Currently only commercially available in Europe (Italy).
- Potentially not cost effective.
- Difficult & expensive to maintain.
- Optimized for larger production settings (> 10 acres).

Self propelled and trailed harvesting system (FACMA)
- Optimized for small production settings (< 4 acres).
- Uses suspension and disruption of material within air flow, which can collect and separate chestnuts and undesirable material (e.g. debris).
- Less components = Less cost & less maintenance.
- Minimal physical handling = Minimizing internal and external damage.

Small scale single-stage harvesting system
- Fluidized Bed:
 - Effective / unique concept but moderately difficult to implement in a continuous flow system. Significant components required.

- Saltation Sieve:
 - Multiple flow/velocity disruption concepts trialed.
 - Very simple concept with minimal components.
 - Minimal aesthetic damage to chestnuts.
 - Effective separation, up to 80+ percent.

Concerns/Remaining studies:
- Cost effectiveness of vacuum.
- Some issues of human ergonomics of overall system remain.
- Direct discharge of material through fan or use of cyclone separator?
- Optimization.