Energy Efficiency Analysis of a Mechanical Shaker for Sweet Cherry Harvest

Long He, Jianfeng Zhou, Patrick Scharf, Qin Zhang

Center for Precision and Automated Agricultural Systems, Washington State University, Prosser, USA

Introduction

- Washington State is the main sweet cherry producing state in U.S., producing 245,000 tons in 2009.
- Mechanical shaker have been used to harvest various kinds of tree fruit.
- Sweet cherry growers are seeking for mechanical harvesting solutions for fresh-market sweet cherries.
- Energy consumption is also an important evaluation criteria for a mechanical shaker.

Objectives

- Obtain the response of the Y-trellis sweet cherry tree (Max. kinetic energy) and its distribution in the branches of the tree under the excitation of the developed shaker.
- Obtain the energy efficiency (fruit removal rate every 1 kJ energy consumption) of the shaker to evaluate the harvest operation of the shaker by the combination of fruit removal rate and energy consumption.

Dynamic tests

A set of dynamic tests were conducted before harvest season in the excitation frequencies of 6, 10, 14 and 18 Hz using developed shaker. The accelerations and pressure were recorded.

Field Tests

Harvest tests

All harvest tests were conducted in a combination of two previously identified optimal impact frequencies of 14 and 18 Hz with two intermittent impact durations of 2 and 5 s. The fruit removal rates of every harvest cycles were calculated and hydraulic pressure was recorded.

Material and Method

The test system constitutes of a hydraulic circuit, an actuator, and a data acquisition and analysis system. A tractor was used to provide the power source for the hydraulic circuit. A hydraulic motor was used as the drive for the shaker, and inlet pressure was monitored via an inline pressure transducer. An adjustable flow control valve was used to adjust the inlet flow rate of the motor to get different excitation frequency.

Results

Based on the data connected from dynamic tests and harvest tests, the results showed from Fig. 4 to Fig. 6.

Conclusions

- The energy delivered to the tree and the percentage of that to the excitation branch increased with the increase of the excitation frequency.
- As the more cycles applied, the fruit removal rate increased, while the energy efficiency was rapidly getting down in all harvest operations.
- The combination of 5 s under 18 Hz excitation could provide the best overall harvest performance for using the developed shaker in harvesting sweet cherry on “Y” trellis.