










acetic acid blend (Figure 10). The optimization algorithm predicted a 
narrow range of points clustered around a 2:1 blend of formic:acetic 
acids (Figure 10).

Discussion

Insect vectors and the plant pathogens they transmit limit food 
production worldwide (Purcell and Almeida 2005). Citrus greening 
disease, transmitted by D. citri, is a major threat to the economic 
sustainability of the citrus industry worldwide. Currently, citrus pro-
duction in the United States and elsewhere is dependent on intensive 
insecticide applications to minimize vector density and movement 
(Tiwari et al. 2011) and nutritional supplementation to ameliorate 
disease symptoms and extend productive tree life (Schumann et al. 
2011). Identifying semiochemicals from host plants and conspecifics 
for use in traps or other control applications would help to control 
the vector and the disease, potentially reducing the use of pesticides. 
Most of the volatile compounds previously identified from head-
space of young leaves of susceptible citrus genotypes (Robbins et al. 
2012) did not produce a measureable antennal response from male 
or female D.  citri under the conditions of our study by GC-EAD 
analysis or EAG response to individual neat compounds. This may 
be related to the relative paucity of chemoreceptors on D.  citri 
antennae (Onagbola et al. 2008) and the possibility that olfaction 
plays a subordinate or secondary role in mating and host plant ori-
entation in this species. Attraction to visual cues and orientation to 
sex-specific stridulation (Wenninger et al. 2009a; Rohde et al. 2013) 
may condition or supersede volatile stimuli.

Several citrus volatiles have been suggested as possible attract-
ants or repellents for D.  citri (Wenninger et  al. 2009b; Patt and 
Sétamou 2010; Mann et al. 2012; Robbins et al. 2012). We tested 
many citrus volatile odorants by EAG and only a few elicited anten-
nal responses (Table 1). During our attempts to study these by EAG 
and GC-EAD, we discovered that antennal responses to the contents 
of glass cartridges containing filter paper loaded with small amounts 
of 2 common citrus compounds, β-ocimene [(Z) and (E)-β-ocimene] 
and citral (neral and geranial), increased dramatically over time 

when the cartridges were stored on a laboratory bench. We also 
observed an identical effect when filter paper was not used and the 
compounds were placed into sealed glass cartridges. GC-MS analysis 
by SPME and extraction of aged filter paper revealed that β-ocimene 
and citral began to disappear from the cartridges within 3  days 
(Figure 3). GC-EAD of extracts of aged filter paper allowed us to 
identify formic and acetic acids as the stimulatory compounds that 
accumulated in the cartridges, presumably the result of oxidative 
degradation of β-ocimene and citral. This is the first observation that 
degradation products of constitutive plant volatiles are stimulatory 
to insect antennae and the first instance of GC-EAD used to identify 
chemical compounds stimulatory to the antenna of a psyllid species.

The existence of plant airborne signals has been known for cen-
turies and has been well documented for ethylene (Lin et al. 2009), 
methyl jasmonate, linalool, and β-ocimene (Holopainen and Blande 
2012). Monoterpenes such as limonene, α-pinene, β-myrcene, lin-
alool, neral, geranial, and β-ocimene (Figure 2) are common citrus 
volatiles found in the atmosphere surrounding citrus orchards (Park 
et al. 2013). Some monoterpenes such as isomers of β-ocimene are 
known to be unstable in air (Fahlbusch et al. 2003). Recent stud-
ies (Oikawa and Lerdau 2013; Park et al. 2013) have shown that 
degradation of VOCs is a common phenomenon and that oxidation 
of acetaldehyde and formaldehyde can produce acetic and formic 
acids that are released into the atmosphere. The emission rates of 
these catabolites (formic or acetic acid) are 200–300% higher than 
the precursor compounds (ethanol, methanol, acetaldehyde, formal-
dehyde, etc.). Park et  al. (2013) showed that monoterpenes com-
prised approximately 24% of VOC compounds above an orange 
grove (C. sinensis). They also measured significant amounts of ace-
tic acid (8.4%) either from photochemical degradation of parent 
compounds or direct plant emission. Blande et al. (2014) suggested 
that emitted plant signals are modified by the environment and that 
biotic responses are collectively determined by emitted signals and 
their degradation products.

Understanding the mechanisms involved in insect sensory percep-
tion, integration, and behavior is complex and has advanced along a 
number of paths in recent years. Integration of the knowledge base 

Figure 10. Predicted 3-dimensional surface response plot generated by a 2-component mixture-amount design to validate the predicted optimal blend of formic 
acid:acetic acid to maximize the number of probes on a wax substrate by Diaphorina citri. Circles are data for design points above (red) or below (pink) the 
predicted value.
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is a challenge, but recent efforts to do so (Renou 2014) emphasize 
the importance of understanding interactions inherent in mixtures 
between odorant signals and between odorant receptors (Baker 
2009; Su et al. 2012). Our finding suggests that an additional level of 
complexity may exist in the volatile environment surrounding insect 
habitats. Although it has been generally accepted that many phy-
tophagous insects orient to their host plants based on plant-emitted 
odors (Bruce et al. 2005; Renou 2014), the peripheral sensory system 
of D. citri appears to be sensitive to compounds that arise through 
degradation of common plant volatiles that, by themselves, do not 
elicit antennal or behavioral responses. As often occurs, serendip-
ity contributed to our discovery that common plant volatiles appear 
to degrade into other distinct small molecules in the environment 
external to the plant and act as primary physiological and behav-
ioral cues for an arthropod vector. This phenomenon may occur 
more widely than we currently appreciate. The host range of D. citri 
is restricted to genera of the family Rutaceae. Despite this rather 
restricted host range, there has been no report of taxonomically spe-
cific compound(s) that play a role in the orientation of this species 
to its host. Antennae of D. citri bear a small number of olfactory 
sensilla that could play a role in mate or host location (Onagbola 
et  al. 2008). However, evidence has not been found to document 
orientation to host or conspecific odors from a distance. Coutinho-
Abreu et al. (2014b) performed extensive single-cell recording from 
antennal sensilla of D.  citri. They identified a 3-component blend 
that modestly increased trap catch on sticky yellow cards in the field, 
but such traps remain highly inefficient. It would appear that sen-
sitive olfactory discrimination of suitable host plant tissue from a 
distance requires a higher degree of olfactory sense sophistication 
than the insect’s morphology suggests. It is more likely that color is 
the stronger attractant for flighted D. citri to young, emergent and/or 
diseased foliage (Mann et al. 2012). Host location by adult D. citri 
may resemble the “degenerate” mechanism proposed by Kennedy 
and Stroyan (1959) to explain host plant discovery by species of 
aphids: random dispersal, visual orientation to yellow wavelengths, 
and gustatory perception of an arrestant stimulus after landing. This 
may explain our results wherein formic and acetic acids are highly 
stimulatory to antennal receptors but do not elicit orientation from 
a distance. Rather, they may condition a behavioral response (prob-
ing) only after alightment on a potential host. This report is the first 
to identify compounds that elicit antennal responses when presented 
to the antenna individually by GC-EAD or EAG. The strength and 
concomitant weakness of these methods is that the odorants are 
presented to the antennae individually. The perception of a mixture 
results from the interaction between its individual components giv-
ing rise to a neural representation that acquires new characteristics 
relevant to the odorant mixture (Renou 2014). Diaphorina citri may 
respond to odorant blends in the context of a particular olfactory 
background as demonstrated for Manduca sexta (Patt et al. 2013; 
Riffel et al. 2014). Acetic and formic acids have been shown to be 
present in the air above citrus orchards (Park et  al. 2013). These 
acids are the only elicitors of antennal response we have been able to 
consistently demonstrate for D. citri and we hypothesize a role for 
these compounds in host location or selection. They may play a pri-
mary role as attractants or a secondary role as additive or synergistic 
agents of other, as yet unidentified, odorants. Our inability to dem-
onstrate antennal responses to an array of citrus volatiles suggests 
that acetic and formic acids may act as primary olfactory cues for 
D. citri and may have practical use for management of this pathogen 
vector. A great deal more effort will be required to determine how 
this finding is relevant to movement of the adult psyllids in the field 

and how acetic and formic acids interact with other odorants at the 
level of perception and behavior.

No pheromone has been identified for D.  citri. Formic acid, 
known as an allomone in ants, is also a sex pheromone for 6 ant spe-
cies (El-Sayed 2014). The list of semiochemical uses for acetic acid is 
extensive (El-Sayed 2014). It is designated as an allomone for one spe-
cies of Phasmida, one species of Uropygi, 5 species of Coleoptera, one 
species of Hymenoptera and 10species of Heteroptera. Additionally, 
it is an attractant for 136 species including Diptera, Heteroptera, 
Hymenoptera, Lepidoptera, and Neuroptera. It is listed as a sex 
pheromone in 9 species of Heteroptera, 1 species of Hymenoptera, 4 
species of Lepidoptera, and 1 species of Orthoptera (El-Sayed 2014).

Male and female psyllids responded consistently to formic and 
acetic acids by EAG and GC-EAD. Incorporation of those com-
pounds into the feeding assay slow-release matrix allowed us to 
examine behavioral response to odorant blends. Probing by D. citri 
of the feeding substrate increased with the addition of a blend of 
formic and acetic acids compared with the unscented control. We are 
now pursuing the hypothesis that additional odorant compounds, 
not stimulatory by themselves, may augment the probing response 
when combined with formic and acetic acids. The 4-component 
blend experiment suggested that β-ocimene and citral did not con-
tribute to increased probing. The model predicted that an optimal 
response (greatest number of probes) would occur in response to a 
2-component blend along the formic-acetic acid axis even though 
that particular combination was not included as a design point 
(Figure  9). Validation of the predicted optimum was obtained by 
the 2-component mixture-amount experiment (Figure 10) that con-
firmed a 2:1 formic:acetic blend as optimal for stimulating the prob-
ing response. Current work concentrates on introducing additional 
odorant compounds into the design space to identify mixtures capa-
ble of eliciting greater substrate probing than we have obtained with 
the 2:1 formic:acetic acid blend. The most evident application of 
that knowledge could be an attract-and-kill formulation that would 
greatly increase the specificity of pesticide applications and thereby 
reduce nontarget effects of insecticides currently used to control 
D.  citri in commercial citrus. These methods could be applied to 
other phytopathogen vectors for practical management.

We were unable to detect acetic and formic acids in the headspace 
over healthy potted citrus under the conditions of our study. However, 
we have not demonstrated that D. citri in nature responds to acetic 
and formic acids arising as degradation products or simply as natu-
rally produced secondary metabolites directly emitted by citrus trees as 
may occur under field conditions. Nonetheless, the role of degradation 
products of parent volatile compounds in the orientation of organisms 
to their hosts may be an area worthy of increased investigation.
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